
The MIDI / Schober Project - Part 2

The MD-2 PC Board
The job of the MD-2 board is to convert swell shoe movement into the appropriate electrical signals. This page describes how it works and what it does.

Keep in mind that the MD-2 program is easily changeable, and can be adapted to many different purposes. In my organ I have two swell shoes, which
will use two MD-2 boards. At this point I am planning to use one for each keyboard, but I may at some point decide to use one of these as a crescendo
pedal.

Swell Shoe Sensor

In the original Schober organs, the swell shoe controlled a potentiometer ("pot") through a rack-and-pinion gear arrangement. In early organs this pot
directly controlled the volume, but after some time this developed a problem --- the pot would become noisy and introduce crackling into the audio.
Schober thus redesigned the circuit: the pot would control the intensity of a light bulb, the bulb would shine on a cadmium sulfide cell, the cell's
resistance would change with the light intensity, and this would be used to control the volume. The advantage of this system is that the thermal inertia of
the lamp causes just enough delay to smooth out any irregularities.

I've replaced the potentiometer with a digital rotary encoder, shown in the photo. The encoder is a three-terminal device which
acts like a pair of switches that alternately open and close as the encoder shaft is turned. As you turn the shaft, the switches operate
like this:

 Switch B Switch A
 open open
 open close
 close close
 close open
 open open
 etc. etc.
In other words, both switches start open. After a tiny turn, switch A closes. A slight turn further and B closes. Another slight turn
and A opens, and then a bit later B also opens. This repeats, over and over, a total of 24 times over one 360-degree revolution.
(For digital freaks, this is called a 2-bit Gray code.) If the encoder shaft turns in the opposite direction, the sequence is reversed.

The advantage of this scheme is that if the switches age and become intermittently noisy, the digital effect is minimal. The encoders I chose cost about
$2 each and are guaranteed for 10,000 revolutions (they are part number 318-ENC160-24P from Mouser Electronics, a Taiwan Alpha Rotary Encoder
model RE160-40E3-20A-24P). If that isn't good enough, I can always replace them with $70 encoders which use optics instead of physical switches and
which are guaranteed for something like 10 million revolutions. (There are several other mechanical encoders in the Mouser catalog as well.)

But there is also a disadvantage. Since the two-bit code repeats over and over, the system can recognize tiny swell shoe movement, but it can't be sure
exactly how far the swell shoe pedal is depressed. My software will require a learning sequence - when you first turn the organ on, regardless of where
the swell shoe is actually positioned, the MD-2 board will assume that it is at minimum volume. The organist will have to do one complete top-to-
bottom-to-top movement so that the MD-2 software can learn what the maximum and minimum settings are. After that, it will figure out the current
position by keeping track of the history of up and down motions.

MD-2 function

Swell shoe sensor position is monitored by a 68HC11 microprocessor; its circuitry is very similar to the MD-1 board, and is explained later. The
processor keeps track of swell shoe position and does three things each time it senses that the swell shoe has been moved:

1. It outputs a MIDI controller message via its 5-pin MIDI OUT connector. The channel number is set by a four-pole DIP switch, similar to that on the
MD-1 board.

2. It outputs a 7-bit code out the 9-pin serial connector. A serial cable sends this code to the MD-1 board. The MD-1 program accepts this number and
uses it as the velocity byte in current note-on messages.

3. The MD-2 board also has space for a PGA2310PA audio integrated circuit. This is a dual volume control (for stereo applications) which is controlled
digitally by the microprocessor. This allows me to directly control audio volume for other signal sources.

My main organ tone generator is either the Hauptwerk program, or the Kloria MyOrgan program; both of these use samples of real organ pipes. These
two programs both accept MIDI controller messages, but Hauptwerk ignores velocity commands. (I don't yet know about MyOrgan.)

My secondary tone source is a Roland CM32P. This is a MIDI tone module which uses short samples to play sounds. It has a number of sounds, but I
anticipate using only the piano in conjunction with Hauptwerk's theatre organ samples. This module uses the velocity code in note-on messages.

At this point I don't see the need for an audio volume control so, although the MD-2 board has space for the PGA2310PA audio volume control, that part
of the boards is not populated, nor have I written the software for that function.

MD-2 Circuitry

The MD-2 board is divided into two parts --- the digital side on the left, and the analog side on the right. To prevent the digital control signals or noise
from getting into the analog circuits, the two sides use separate grounds and separate power supplies for isolation. The digital side is shown in Figure 1,
while the analog side is in Figure 2.

Digital circuitry

The digital circuit in Figure 1 is actually very similar to the MD-1 board.

Page 1 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

Let's explain the various parts, starting at the top left corner of the 68HC11.

(a) Top left is the 8 MHz crystal and attached circuitry, which sets the speed of the processor. The 68HC11 internally divides this by 4, so the main clock
frequency of the processor is 2 MHz.

(b) Several resistors under that (and resistors elsewhere) connect various pins of the HC11 to +5-volt Vcc, to provide a pullup function - that is, to hold
these pins at +5 volts when they are not used for other functions.

(c) Jumper P1 allows bootstrapping the HC11. In normal mode, this jumper would be open. When pins 1 and 2 of the jumper are shorted together, the
processor goes into a bootstrap mode, where it can be loaded with a program through the serial port. This is the method that the EEPROM software
would initially be loaded.

(d) The DS1233-10 IC, U2, is a reset circuit. It monitors the Vcc power, and automatically resets the processor -- i.e., restarts it -- when the power goes
below about 4.5 volts.

(e) The 68HC11 has a built-in serial I/O port which can run at the standard baud rates, as well as at 31.25 kHz, the MIDI rate. It uses pins 20 and 21.
This serial port connects both to 9-pin RS-232 connector J2, and also to MIDI OUT jack J1.

Like the MD-1, the MD-2 board has two serial ports, though only one of them can be used at a time:

There is 9-pin DB9F connector, which can be connected to the comm port of a PC. It is does two jobs: (1) During program development,
it is used for loading the software into the processor, and also for program testing. (2) During operation, it outputs velocity information
which is sent to the corresponding MD-1 board. The MAX232 IC, U3, is used as the converter between the low-level TTL voltages used by
the HC11, and the positive and negative larger voltages used by typical RS-232 ports at the DB9F connector. It includes a charge pump
which provides the necessary +10 and -10 power for output).

There is also a 5-pin MIDI connector, which is the main MIDI output.

Serial output from U1 pin 21 goes through U4a, a 74LS139. I'm using it to steer the output to either the MAX232 or the MIDI jack. It is controlled by its
B input pin, which comes from pin 27 of the HC11 - it is normally held high on CPU reset, so the normal connection is to the 9-pin connector. If the
68HC11 wants to output MIDI, it grounds this B input (via U1 pin 27), and changes the baud rate to 31.25 kHz.

(f) P3 is the input connection for the swell shoe sensor. IC U4b is a buffer which isolates the sensor inputs from the microprocessor to prevent damage to
it, but it also converts the Gray code output of the sensor into a binary output to the processor.
This function could just as well be done in software, but it seemed like a good use for the spare half of U4, and it also
provides some buffering and isolation. The encoder wiring is shown here (it is labelled C4 in the block diagram).

(f) Jumpers P2 and P4 are left open in organ applications, but they allow this board to run with the Motorola Buffalo
version of the 68HC11 for debugging purposes. P2 selects whether the Buffalo program will run, or whether the HC11
will instead jump to location B600 on bootup. P4 is used to enable tracing and breakpoints. As mentioned, these two
jumper headers are here strictly for debugging and other applications.

Page 2 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

(g) Power supply circuitry at the bottom includes a 7805 regulator and filtering, so the board can be fed from an
unregulated DC source, or even from a "wall wart" converter. If you use a +5-volt supply, then the 7805 can be left out and its terminals 1 and 3 shorted
together.

(h) Switch S2 is a four-pole DIP switch which sets the channel number for the MIDI output. MIDI signals can be assigned a channel from 1 to 16.

(i) Connector pins P7 provide four auxiliary inputs "just in case".

Figure 2 shows the analog portion of the board.

The heart of the board is the PGA2310 IC, which is a stereo volume control chip. It receives digital control signals (on the three lines coming in from the
left) from pins 23, 24, and 25 of the processor. The right side of the IC is strictly analog, and has two inputs (coming from J3 and J4) and two outputs
(going out to J5 and J6). Each of these is buffered by an NE5532 op-amp. A separate power supply at the bottom provides +12 and -12 volts to the
analog circuits. Resistor R11 is just a jumper which connects the analog and digital grounds together at one specific point.

PCB Layout

The following figures show the MD-2 PC board layout. The board is a two-sided board with plated through holes, and the size is 3.5 by 6 inches. While I
do not sell any blank PC boards, kits, or completed boards, you can make your own boards from the layouts shown below, or there are a number of PC
board manufacturers who can make a board for you if you send them the Gerber files available here.

The top solder side:

Page 3 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

The bottom solder side (as viewed from the top, through
the board):

The top silk screen, which shows the location of components:

The completed PC board:

Page 4 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

THE SOFTWARE

The 68HC11A1 has 512 bytes of EEPROM and 256 bytes of RAM, and only about 50% of each is used in the program. Here is the listing for version
1.0.

0001 * MD-2 Swell Shoe program
0002 * Copyright (C) 2006 by Peter A. Stark
0003
0004 * Version 1.0 8/29/2006 - original
0005 * THIS VERSION ONLY OUTPUTS SERIAL OUTPUT ON RS-232 AND MIDI
0006 * AUDIO VOLUME CONTROL IS NOT IMPLEMENTED
0007
0008 * I/O bits:
0009 * Inputs
0010 * PD0: Serial RS232 input from J2
0011 * PC3-0: Channel DIP switch S2
0012 * PC7-4: extra inputs on P7
0013 * PE0: Jumper to ground for Buffalo P2
0014 * PE7-4: Rotary encoder signal from P3
0015 * MODB: Bootstrap mode jumper P1
0016 * XIRQ': Trace enable from P4
0017
0018 * Outputs
0019 * PA7: H=RS232 (default), L=MIDI out
0020 * PD1: Serial out to RS232 or MIDI to J2
0021 * PD5-3: SS', SCK, MOSI to PGA2310
0022
0023
0024 **************************
0025 * GENERAL SYSTEM EQUATES
0026 **************************
0027
0028 0000 RAM EQU $0000 START OF RAM
0029 1000 REG EQU $1000 START OF REGISTERS
0030 b600 EEPROM EQU $B600 START OF EEPROM
0031 b7ff ENDEEP EQU $B7FF END OF EEPROM
0032 1000 PORTA EQU $1000 PORT A DATA & TIMER - B7=BI, B6-3=O,B2-1=I
0033 1026 PACTL EQU $1026 PORT A CONTROL
0034 1004 PORTB EQU $1004 PORT B DATA - OUTPUT ONLY
0035 1003 PORTC EQU $1003 PORT C DATA - BI
0036 1005 DDRC EQU $1005 PORT C DIRECTION
0037 1008 PORTD EQU $1008 PORT D DATA - 6 BITS BI & SCI/SPI
0038 1009 DDRD EQU $1009 PORT D DIRECTION
0039 100a PORTE EQU $100A PORT E - INPUT ONLY & A/D
0040 102b BAUD EQU $102B SCI BAUD REG
0041 102c SCCR1 EQU $102C SCI CONTROL 1 REG
0042 102d SCCR2 EQU $102D SCI CONTROL 2 REG
0043 102e SCSR EQU $102E SCI STATUS REG
0044 102f SCDAT EQU $102F SCI DATA REG
0045 1028 SPCR EQU $1028 SPI CONTROL REG
0046 1029 SPSR EQU $1029 SPI STATUS REG
0047 102a SPDR EQU $102A SPI DATA REG
0048 103a COPRST EQU $103A COP RESET REG
0049 000b BXCONT EQU 11 CONTROLLER CHANNEL = 11
0050
0051 *****************
0052 * RAM LOCATIONS
0053 *****************
0054
0055 0000 ORG RAM
0056
0057 * SET UP A CIRCULAR SERIAL OUTPUT BUFFER
0058 * CAUTION - BUFFER MUST START AT $0000 !

Page 5 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

0059 * EMPTY IF BUFIN=BUFOUT, DON'T WORRY ABOUT FULL -
0060 * HOPEFULLY WILL NEVER HAPPEN
0061 0000 BUFFER RMB 64 SERIAL OUTPUT BUFFER
0062 0040 BUFIN RMB 2 PUT NEXT BYTE HERE POINTER
0063 0042 BUFOUT RMB 2 NEXT BYTE TO OUTPUT POINTER
0064
0065 0044 SWSHOE RMB 1 CURRENT SW SHOE POSITION
0066 0045 STAPOS RMB 1 SHOE STARTING POSITION
0067 0046 PREVSH RMB 1 PREVIOUS POSITION
0068 0047 VOLUME RMB 1 CURRENT VOLUME
0069 0048 TIVOL RMB 1 VOLUME DOCTORED UP FOR TI CHIP
0070 0049 RSVOL RMB 1 VOLUME DOCTORED UP FOR RS-232 OUTPUT
0071 004a BXVOL RMB 1 VOLUME FOR BX CONTROL CHGE MSG
0072 004b BXCHAN RMB 1 BX + CHANNEL NUMBER
0073
0074 007f STACK EQU $007F
0075
0076 ****************
0077 * Start and Initialize ports
0078 ****************
0079
0080 b600 ORG EEPROM
0081
0082 b600 8e 00 7f COLDST LDS #STACK
0083 b603 7f 10 04 CLR PORTB OUTPUT - NOT USED
0084 b606 7f 10 05 CLR DDRC PORT C IS ALL INPUT
0085 b609 86 38 LDAA #$38 PORT D IS INPUT EXC SERIAL...
0086 b60b b7 10 09 STAA DDRD ...AND SPI OUTPUT
0087 b60e 7f 10 0a CLR PORTE PORT E IS ALL INPUT
0088
0089 **********
0090 * Initialize the SCI serial port
0091 * use $30 for 9600 baud during testing
0092 * use $20 for 31.25K baud for final version
0093 **********
0094 b611 ce 10 00 LDX #REG POINT TO REGISTERS
0095 b614 1c 00 80 BSET PORTA-$1000,X $80 PA7=H FOR RS232
0096 b617 1c 26 80 BSET PACTL-$1000,X $80 ... AND OUTPUT
0097 b61a 86 20 LDAA #$20 SET 9600 BAUD TEMPORARY
0098 b61c b7 10 2b STAA BAUD BAUD REGISTER
0099 b61f 86 00 LDAA #$00 SET 8X1, NO WAKEUP
0100 b621 b7 10 2c STAA SCCR1
0101 b624 86 0c LDAA #$0C
0102 b626 b7 10 2d STAA SCCR2 ENABLE
0103
0104 **********
0105 * Initialize SPI port not needed until we add audio control
0106 **********
0107
0108
0109 **********
0110 * WARMST - WARM START
0111 **********
0112
0113 b629 b6 10 03 WARMST LDAA PORTC GET CHANNEL NUMBER
0114 b62c 84 0f ANDA #$0F MASK IT
0115 b62e 8b b0 ADDA #$B0 MAKE INTO CTRL CHG COMMAND
0116 b630 97 4b STAA BXCHAN
0117 b632 7f 00 47 CLR VOLUME INITIAL = 0
0118 b635 7f 00 45 CLR STAPOS STARTING POSITION = 0
0119 b638 86 04 LDAA #4
0120 b63a 97 46 STAA PREVSH PREV POSITION = 4
0121 b63c 4f CLRA
0122 b63d 5f CLRB
0123 b63e dd 40 STD BUFIN BUFFER IS EMPTY
0124 b640 dd 42 STD BUFOUT
0125
0126 b642 86 55 MAINLP LDAA #$55
0127 b644 b7 10 3a STAA COPRST RESET COP TIMER
0128 b647 86 aa LDAA #$AA JUST IN CASE
0129 b649 b7 10 3a STAA COPRST
0130
0131 b64c b6 10 0a LDAA PORTE GET DATA
0132 b64f 43 COMA
0133 b650 44 LSRA
0134 b651 44 LSRA
0135 b652 44 LSRA
0136 b653 44 LSRA
0137 b654 97 44 STAA SWSHOE
0138 b656 90 46 SUBA PREVSH SUBTRACT PREVIOUS
0139 b658 27 6a BEQ OUTPUT NO CHANGE
0140
0141 * FIGURE OUT IF UP OR DOWN
0142 b65a 81 07 CMPA #$7 DOWN CUR=8 PREV=1
0143 b65c 27 0e BEQ DOWN
0144 b65e 81 f9 CMPA #$F9 UP CUR=1 PREV=8
0145 b660 27 05 BEQ UP

Page 6 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

0146 b662 4d TSTA
0147 b663 2a 02 BPL UP
0148 b665 2b 05 BMI DOWN
0149
0150 b667 7c 00 45 UP INC STAPOS
0151 b66a 20 05 BRA OK
0152
0153 b66c 7a 00 45 DOWN DEC STAPOS
0154 b66f 20 00 BRA OK
0155
0156 b671 96 44 OK LDAA SWSHOE GET CURRENT POSITION
0157 b673 97 46 STAA PREVSH SAVE AS PREVIOUS
0158 b675 81 04 CMPA #$04 ON INDENT?
0159 b677 26 4b BNE OUTPUT NO, SO CONTINUE
0160
0161 * SWELL SHOE IS BACK ON A CLICK, SO SEE WHICH WAY IT WENT
0162 * AND ADJUST THE VOLUME ACCORDINGLY
0163
0164 b679 96 45 LDAA STAPOS
0165 b67b 27 47 BEQ OUTPUT JUST IGNORE IF NO CHANGE
0166 b67d 7f 00 45 CLR STAPOS CLEAR IT FOR NEXT
0167 b680 4d TSTA
0168 b681 2a 08 BPL INCVOL INCREASE VOLUME IF +
0169
0170 * DECREASE VOLUME IF -, BUT NOT BELOW 0
0171 b683 96 47 DECVOL LDAA VOLUME
0172 b685 4a DECA
0173 b686 2a 0c BPL VOLOK
0174 b688 4f CLRA
0175 b689 20 09 BRA VOLOK
0176
0177 * INCREASE VOLUME IF +, BUT NOT ABOVE 20
0178 b68b 96 47 INCVOL LDAA VOLUME
0179 b68d 4c INCA
0180 b68e 81 14 CMPA #20
0181 b690 23 02 BLS VOLOK
0182 b692 86 14 LDAA #20
0183 b694 97 47 VOLOK STAA VOLUME
0184
0185 * NOW DOCTOR UP THE VOLUME TO DESIRED RANGE ~~
0186
0187 b696 96 47 LDAA VOLUME VALUE = 0 TO 20
0188 b698 48 LSLA
0189 b699 48 LSLA VALUE = 0 TO 80
0190 b69a 8b 1e ADDA #30
0191 b69c 97 49 STAA RSVOL VALUE = 30 TO 110
0192
0193 * ALSO SET TIVOL AND BXVOL ~~
0194
0195 b69e 97 4a STAA BXVOL FOR NOW USE THE SAME
0196
0197 * NEXT OUTPUT VIA SPI PORT TO TI CHIP - USE TIVOL ~~
0198
0199 * PUT RSVOL STUFF INTO CIRC BUFFER
0200
0201 b6a0 de 40 LDX BUFIN
0202 b6a2 86 80 LDAA #$80 OUTPUT VIA RS232
0203 b6a4 d6 49 LDAB RSVOL VOLUME
0204 b6a6 ed 00 STD 0,X PUT BOTH INTO BUFFER
0205 b6a8 8d 3c BSR INCIN BUMP POINTER BY 2
0206
0207 * PUT BXVOL STUFF INTO CIRC BUFFER
0208
0209 b6aa de 40 LDX BUFIN
0210 b6ac 86 00 LDAA #$00 OUTPUT VIA MIDI
0211 b6ae d6 4b LDAB BXCHAN $B AND CHANNEL...
0212 b6b0 ed 00 STD 0,X ...BOTH INTO BUFFER
0213 b6b2 8d 32 BSR INCIN BUMP POINTER BY 2
0214 b6b4 de 40 LDX BUFIN
0215 b6b6 c6 0b LDAB #BXCONT CONTROLLER NUMBER...
0216 b6b8 ed 00 STD 0,X ...INTO BUFFER
0217 b6ba 8d 2a BSR INCIN BUMP POINTER BY 2
0218 b6bc de 40 LDX BUFIN
0219 b6be d6 4a LDAB BXVOL AND VOLUME...
0220 b6c0 ed 00 STD 0,X ...INTO BUFFER
0221 b6c2 8d 22 BSR INCIN BUMP POINTER BY 2
0222
0223 * NOW OUTPUT FROM BUFFER IF NEEDED
0224
0225 b6c4 96 41 OUTPUT LDAA BUFIN+1
0226 b6c6 91 43 CMPA BUFOUT+1
0227 b6c8 26 03 BNE SKIP1 CONT IF NOT EMPTY
0228 b6ca 7e b6 42 JMP MAINLP ELSE REPEAT LOOP
0229
0230 b6cd f6 10 2e SKIP1 LDAB SCSR READ STATUS
0231 b6d0 c4 40 ANDB #$40 TRANSMIT COMPLETE FLAG
0232 b6d2 26 03 BNE OUT2 OK IF XMTR FINISHED, ELSE...

Page 7 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

0233 b6d4 7e b6 42 JMP MAINLP ...XMTR BUSY, SO REPEAT LOOP
0234
0235 b6d7 de 42 OUT2 LDX BUFOUT
0236 b6d9 ec 00 LDD 0,X GET TWO BYTES FROM BUFFER
0237 b6db b7 10 00 STAA PORTA CHOOSE RS232 IF H OR MIDI IF L
0238 b6de f7 10 2f STAB SCDAT SEND CHARACTER
0239 b6e1 8d 0c BSR INCOUT BUMP POINTER BY 2
0240
0241 * AND FINALLY RETURN INTO LOOP
0242
0243 b6e3 7e b6 42 JMP MAINLP
0244
0245 * INCREMENT BUFIN POINTER BY 2
0246 b6e6 d6 41 INCIN LDAB BUFIN+1
0247 b6e8 5c INCB
0248 b6e9 5c INCB
0249 b6ea c4 3f ANDB #$3F BUFFER SIZE = 64
0250 b6ec d7 41 STAB BUFIN+1
0251 b6ee 39 RTS
0252
0253 * INCREMENT BUFOUT POINTER BY 2
0254 b6ef d6 43 INCOUT LDAB BUFOUT+1
0255 b6f1 5c INCB
0256 b6f2 5c INCB
0257 b6f3 c4 3f ANDB #$3F BUFFER SIZE = 64
0258 b6f5 d7 43 STAB BUFOUT+1
0259 b6f7 39 RTS
0260
0261
0262 b6f8 43 4f 50 59 52 49 COPRIT FCC 'COPYRIGHT (c) 2006 BY '
 47 48 54 20 28 63
 29 20 32 30 30 36
 20 42 59 20
0263 b70e 50 45 54 45 52 20 FCC 'PETER A. STARK'
 41 2e 20 53 54 41
 52 4b
0264
0265
0266 END

The above program is subject to change. Aside from the lack of PGA2310PA audio support -- which may not ever really be needed -- there may be some
slight adjustments needed to provide the correct scaling for the MIDI controller output and velocity output. Right now, both of these settings range from
a minimum of 30 to a maximum of 110, but this may need to be changed. See the sections identified with two tildes (~~) in the above listing.

A Note on the DIP Switch, and Jumpers

DIP switch S2 sets the channel number minus 1. That is, MIDI channels are numbered 1 through 16, but the binary code used is 0 through 15. For
example, if I want to play on channel 13, I actually set S1 to 1100, which is the binary number for 12. The way the switches are wired, an open switch
generates a 1 while a closed switch is a 0, so the four switches are set to open-open-closed-closed.

Jumpers: There are several header strips for jumpers. When using a 68HC11A1 that has Motorola's Buffalo debugger programmed into its ROM, P1,
P2, and P4 determine the operating mode for the software, as follows:

1. To run Buffalo, place a shorting jumper on P2 and P4. This allows you to do various debugging functions via the serial port; if you have programmed
the MD-1 software into the chip, you can do a manual jump to it at location B600.
2. To have Buffalo start, but then right away automatically jump to the MD-1 software at location B600, remove all jumpers. This is the normal
operating mode once you have programmed the chip and installed the board into your organ.
3. To go into bootstrap mode, so you can program the chip via the serial port, place a shorting jumper on P1.

Location P7, right next to the DIP switch, is "for future use". It is an extra set of four inputs that can be used for other applications, if needed, but not
used in this application. For example, the 4-pole DIP switch could be replaced with an 8-pole switch, with the extra four poles used for other input
information.

Page 8 of 8MD-2 Description

8/20/2007http://www.users.cloud9.net/~stark/md2.htm

